
Music Visualizer for PlayStation Vita

Interim Report

Submitted for the BSc in Computer Science with Games

Development

January 2015

By

Adam Connor Lutton

Table of Contents
Introduction ... 3

Aim and Objectives ... 4

Background ... 5

Music and Audio Signals ... 5

Fourier Transformations .. 7

Shaders ... 7

Visual Accompaniment VS Visual Representation ... 8

Development Method .. 8

Designs ... 9

Class Design ... 9

Media Controller .. 10

Shader Controller .. 11

Switching Tracks ... 12

Switching Shaders ... 13

User Interface design .. 13

Music Loading .. 13

Audio playback .. 14

Experimental Design ... 14

Testing .. 15

Project Management Review .. 16

Task List .. 16

Current Progress ... 19

Revisions and Changes in Project ... 19

Appendices ... 20

Figure 1: .. 20

Figure 2 : ... 20

Figure 5: .. 20

Figure 6: .. 20

Figure 7 : ... 20

Figure 12: .. 20

References ... 22

Introduction

This project is intended to produce a music player for the PlayStation Vita mobile games
console. Part of this software is “Music Visualization”, a term describing the use of graphical
effects displayed on screen that are manipulated or distorted either in time with the beat of
the audio, or just as a general accompaniment of the audio. Ideally, the software should also
pick visualizations based on the genre of music.

This document will detail more in-detail research into the processes, tools, and techniques
the project is using, such as Fast-Fourier Transformations and Shaders. Furthermore,
program design, an evaluation of progress so far, remaining tasks, and additional topics; will
also be discussed in detail. The background and project management topics are of particular
interest, as it explains the fundamentals of the specific aspects of the project and the results
of trying to implement some of them or the reasoning as to why they were not implemented.

Design aspects of the project have changed drastically since the initial proposal, as has
methodology. The heavy implication of signal processing is no longer a primary objective,
instead the project is now focused on user features and visual effects.

During the remainder of this project, FFT implementation will be added to the currently
functional prototype. The current version of the software will be improved to allow superior
music playback, functionality, and improved ease of use by fine-tuning the user interface
design. That being said, it is an on-going build and certain features have not been
implemented yet, particularly graphics. The designs in this document currently reflect
working designs and are not final.

Aim and Objectives

The purpose of this project is to create a music visualizer for the PlayStation Vita system,

which provides an accurate visual response to an audio input.

This will be obtained by completing a number objectives that deal with multiple aspects of

the project. They are listed as such:

Objective 1 – Create software that loads and plays the user's audio files

Simply put, the software is a music player, therefore it needs to meet the requirements that

other music players on the market already meet. Specifically, the ability to load in audio files

and then allow the user to pause, play the audio, as well as skip to the next or previous

songs. Doing this in PlayStation Mobile is a relatively easy task compared to OpenTK, so

this aspect will be developed using that tool-set. In terms of evaluation, this particular aspect

should “Just work”, so failure to operate as intended is a large flaw in the program.

Objective 2 – Create multiple visualizers to accompany the audio through the use of

shaders

The software is expected to allow the user to switch between several visual designs. These

shaders will be created and imported into the PlayStation Mobile project. An additional

programs such as AMD RenderMonkey, ShaderToy, Shader Tool, and GLSL Hacker will be

used to create them. The reasoning for this is to allow easier manipulation of the code with

faster visual representation, it also removes the possibility of other parts of the program

causing the shaders to not be displayed, which would become an annoyance during

development. The visualizers will be evaluated based on their visual quality and

effectiveness of audio representation where applicable.

Objective 3 – Implement FFT to improve and create new graphical effects

To obtain the most accurate representation, FFT needs to be used to obtain specific audio

data of a track as it plays. Specifically, the frequency of a given audio signal over a given

time. Using this, it would be relatively simple to pass in the frequency into the vertex or

fragment shader to generate an effect. For example, an animated waveform pattern. This will

be evaluated in a similar fashion to the objective above.

Objective 4 – Research and test how to improve the accuracy of the visualization in

relation to the audio track

Additional research to improve the synchronization of the audio and graphical effects could

be done. This would probably be in relation to audio recognition software, such as voice

recognition for example.

Objective 5 – Use audio data to change visualizations

Based on the previous objectives success, if implemented, it could be possible to

differentiate between different music genres, know the difference between a music track and

a vocal track (podcast), and even determine different instruments within the track. This will

be evaluated in a similar fashion to objectives 2 & 3.

Background

There are a variety of aspects that this project revolves around. The most notable and
important aspects have to do with audio signal representation and graphical visualization.
Furthermore, the method by which the project is being developed.

Music and Audio Signals
Sound is consists of several different attributes, the four main ones being; pitch, loudness,

duration, and timbre.

Pitch is defined as a frequency related scale that is designated from low to high. Specifically,

it is defined as the frequency of a sine wave that is matched to the target sound that human

listeners would expect. In relation to this project, pitch is the defining factor for audio

representation, as the process of calculating the wave form heavily relies on the initial

frequency of that sound at a given point. (Klapuri & Davy, 2007)

To get a good idea of how sound is defined as a waveform, using an Oscilloscope, it is

possible to convert sound into voltages and displayed. The image displayed sound give an

accurate waveform formation of the constantly changing formation of audio pitch through the

duration of a track. This comes from personal experience of using this tool.

Loudness is defined by its physical properties within audio space. In terms of audio signals

however, we tend to apply logarithmic scale based on its magnitude, known as the decibel

scale. The magnitude is the second most important aspect to consider when it comes to

music visualizations. Quieter and louder parts of an audio track need to be distinctly different

from each other (Not required for visual accompaniment, this point will be discussed later),

otherwise the representation will be considered far from accurate. (Klapuri & Davy, 2007)

In terms of its calculation, within real-world space it is denoted as:

Figure 1 - Equation for calculating the intensity of a sound. See Appendix for image source.

“I” equates to the sounds intensity (Magnitude). “p” defines the sound pressure and “v”

defines the particle velocity. Both I and v are defined as vectors.

The sound intensity over a given time (T) is given by:

Figure 2 - Sound intensity over a given time. See Appendix for image source.

Here, it shows the change in pressure and velocity in relation to time. The amount of time is

noted from zero to the maximum duration.

(Wikipedia, n.d.)

However, in relation to signal processing the simplest way to explain the differences in

magnitude is to use Sine Waveform graphs.

The volume of a sound would be represented on the graph as amplitude.

Figure 3 - Low amp graph representing low volume

Figure 4 - High amp graph representing high volume.

The first graph shows a shallower curve indicating that the amplitude (Volume) is relatively

lower compared to the second showing a steeper curve. As an additional note, for graphs

like this, the closer the curves are the higher the magnitude, which is calculated based on

the peak-to-peak amplitude.

Timbre is an aspect of sound that specific relates to music. It is often referred to as a

sound’s “Colour” and relates to how we recognise sound sources. Specifically it relates to

how you can have two different instruments play at the same pitch and volume, but are still

distinguished by their timbre. (Klapuri & Davy, 2007)

It relies heavily on the fundamental frequency, which is the lowest frequency, one of which

that also defines the note of the sound within musical terms. Harmonics is the richness of the

sound, which is described as the sum of the number of distinct frequencies. On top of that is

the “Envelope” which can help recognise a sound source based on the Attack time, Decay

time, Sustain level, and Release time (ADSR Envelope) (Dodge & Jerse, 1997). Combined,

Harmonics and Envelope make up a large chunk of how timbre is processed.

Fourier Transformations
A Fourier transformation breaks down a signal into the frequencies that construct it. There

are various forms of the algorithm for different purposes, including discrete or continuous

calculations. Specifically for this project, Fast Fourier Transform (FFT) is used to compute a

discrete Fourier Transform and its inverse. The algorithm converts time to frequency,

however in a much faster method. It factorizes the DFT matrix into a product of sparse (A

matrix containing mostly zeroes) factors.

Here is the algorithms for calculating frequency and time:

Figure 5 - DFT Algorithm where Xk is equal to frequency.

Figure 6 - DFT Algorithm where Xn is equal to Time. Image sources in Appendix.

Xk represents the amount of the Frequency k in the signal.
xn represents the value of the signal at time n.
n is the current sample being used.
k is the current frequency.
N dictates the total number of samples with have.

The first figure calculates the amount of times a particular frequency has occurred over a

number of samples on a given time spike. The second figure describes all the frequencies

that have occurred at a given point in time. (Better Explained, 2012)

For the project, this equation should provide all the frequencies at a given time within an

audio track which can then be in turn used to plot graphical data such as vertices, or used to

change the colour, and so on. Due to the complexity of the equation however,

implementation will be time consuming.

Shaders
These are a program that tells the graphics render to draw an object in a particular way,

whether it be a specific shape or colour. Two specific shader types exist, vertex and

fragment shaders. Vertex describes the positioning of an object, texture coordinates, and so

on. The fragment shader describes the colour, texture data, alpha values, and so on.

In regards to this project, shaders will be used to create unique graphical effects that will be

used for the visual accompaniment to the music being played.

Visual Accompaniment VS Visual Representation
During the course of development, considerations towards how the graphic visualization

should be implement lead to the thought process and research of visuals that did not react to

signal processing at all. What is meant by this is that the on-screen graphics are deliberately

not synced up or related to the audio track playing in anyway.

Examples of this exist, the PlayStation 3 has multiple visualizers which only display images

that do not relate to the beat or pitch of the music at all. For example, the visualizer that is

just a 3D model of the Earth with the camera rotating around it.

Figure 7 - PlayStation 3's Earth Visualizer. Image Source in Appendix.

This led to a design decision that multiple visualizers should exist within the program. Some

would accurately represent the music through its graphics by processing the signals, and

others would just draw random visuals that are completely separated from signal processing.

An advantage to developing these visualizations is that they can be developed relatively

quickly, as they do not rely on configuring with FFT equations nor do they require testing to

see whether the synchronization is correct.

Development Method
The project is using aspects of multiple development methodology. It uses aspects of

Adaptive, Iterative, and Prototype development models. Large parts of the program are

designed in a general way, then tasks that are to be completed first are quickly reviewed.

After that, prototyping is used to build aspects of the program. From there it is refined

continuously.

The main program prototype has been redesigned completely twice at this point, reflecting

changes to improve efficiency, reuse of code, and streamlining of functions. It is also a

reflection of issues that have occurred by using various software toolsets.

Designs

Class Design
For the prototype, two slightly different design patterns were used. The first design reflects the structure that was planned and partially used for

the OpenTK prototype, the second is a revised design for PSM.

Game.cs

Controllers

Scene

Objects Shaders

Media Loading

Media Control

Input

Loaded as
external files

Game.cs

Controllers

ShadersInputMedia

Loading Playback

Figure 8- Designs 1 and 2 of the program.

In both designs, the use of Controllers is vital. In left diagram, two controllers exist; one for scene and the other for input. The Scene controller

defines what is displayed on screen, and the original design would contain lists of visual objects and shaders to display. The input controller

handled button presses but also aspects of the UI that were related to media playback, hence the connection to it. Media loading and playback

control were completely separated.

In the second design, aspects were streamlined further. A Media controller was added which handled loading and playback. The scene

controller was removed from the design in favour of something more basic. Input now directly controls which shaders to be displayed and

sends that information back to the drawing code (Not pictured).

The second design is an improvement from a scalability and efficiency standpoint. Components of the program should be able to communicate

with each other without issue, and the drawing code is less complex. It keeps all of the relevant components of the program under one label.

Additionally, once FFT is implemented, it should not affect other aspects of the program, in theory.

Media Controller

Media

Loader

ReadIn()

LoadIntoList()

Playback

Play()

Pause()

Next()

Previous()

Audio Data

Input

ActiveTrack

Figure 9 - Media Controller

As mentioned previously, the media controller handling loading and playback. The loader has two main processes, one for reading in the music

files contained in the directory folder, and another for compiling that information into a list which the playback features will use. Playback

contains a subclass named “ActiveTrack”, which contains all the information for the current playing audio file; such as name, file directory, file

size, duration of audio track, and so on. The process of switching will be described later on.

 Shader Controller

Shader Controller

Shader Files

ActiveShader

LoadShader()

NextShader()

UnloadShader()

Loads in
Shader files

Figure 10 - Shader Controller

The shader controller is quite similar to the media controller in that it has an “ActiveShader” subclass which loads and unloads shader files into

the program while it is running. It is also similar in the fact that it loads in and organizes the shader files into a list, making the process of

switching between them easier.

Additional design work is expected to be done in this area. Many of the controllers work in similar ways, but often reuse code. Added iterations

may streamline the design further through inheritance and the use of interfaces. This will be explored and commented on in the final report.

Switching Tracks

ActiveTrack.Stop() ActiveTrack.Unload()

ActiveTrack.Load(currentTrackNo+1)

ActiveTrack =
LoadedTrack

ActiveTrack.Play()

User Clicks For Next
Track

End

Figure 11 - Loading in audio tracks while the program is playing

Switching audio tracks using “ActiveTrack” works by first stopping the current audio file from playing, then unloading the audio data. Next loads

the next audio track by taking in an argument that refers to the index of the next track in the list of tracks already loaded in. It then sets the

loaded track as the active track, and plays the new track.

Switching Shaders

ActiveTrack.Unload() ActiveShader.LoadNext()
ActiveShader

=
LoadedShader

User Clicks For Next
Shader

End

Figure 12 - Shader switching

Shaders are dealt with in a similar way, but with less steps. The shader is unloaded, the next shader is loaded, and then the active shader
becomes the loaded shader. Again, very similar to media. However, the possibility of iterating this further is unlikely.

User Interface design
Simplicity is the key to good UI design, as such the following designs attempt to minimize the amount of on-screen elements if possible.

Another aspect is the amount of screens the user sees. Ideally, the program should only have two screens; a screen where their music

collection is displayed, and a screen with music playback controls.

Music Loading

Figure 13 - Music selection menu

At the start of the program after a short loading screen, this screen should appear. The main aspect of it is a loaded list of audio tracks from the

user’s music collection on their device. They should be able to scroll through it using the scroll bar on the side. Once the user selects a track it

should start playing it and take them to the playback screen below.

Audio playback

Figure 14 - Music playback controls

The playback controls follow the standard design that you would find on any other media player software; play/pause button, along with next
and previous track buttons. Above that is the timeline for the track. These controls appear on-screen then fade away to allow a full view of the
visualizer in the background. They appear again when the user taps the screen.

Experimental Design
Without FFT implementation, it makes it quite difficult to theorize tests that could be performed. It is clear however that testing the parity of

audio and visuals is important.

The most basic test for this is to have an image flash on the screen in time to an audio signal. Using an audio track which is a continuous

10,000Hz sound wave, setting it up to play at random intervals, and then using Fourier transformation to detect when it is being played. This

acts as the most basic test for detecting an audio signal and have it generate a visual response.

From there, more intricate tests can be performed, including waveform patterns, image manipulation, and so on. Unfortunately at this point in

time, the use and understanding of FFT is extremely limited. So any and all tests will be written in the final report.

Testing
Additional program testing will take the form of standard User Interface and feature testing, making sure that all parts of the program work as

intended. Here is an initial list of tests that will be performed on the first prototype near its completion.

Test Description

Start program Start the program and have it boot into the first screen.

Music loading in and
displaying as a list

The first is a complete list of music in their collection. It should display all songs with the
ability to scroll down the list.

User selection The user selects a track. When the user selects the track it should start playing the file and
move on to the next screen with the media controls and visualizer.

Music playing Music plays. The music should not skip, stop, or any other issues.

Music pause Music pauses; stops playing until resumed.

Next Track The next music track is loaded in and begins playing.

Previous Track The previous music track is loaded in and begins playing.

Music controls fade out After a few seconds the playback controls should fade of screen to allow a full view of the
visualization.

Controls fade in When the user taps the screen, the controls should appear again.

Shader switching The visualizations on screen should change.

These tests define whether or not the prototype meets the standard of being feature complete. Even without FFT implementation, meeting all of

these test is the bare minimum of being feature complete.

Project Management Review

Task List
The original task list was designed without much insight to how time consuming certain tasks

were, or whether or not they could even be completed with the current knowledge I have. As

such; many tasks from that original task list either were discarded, are still being worked on,

or have yet to be started.

The table below provides the current status of the original tasks in that list.

Task Name Completed? Description

Task List Yes Completed for Initial Report

Time Management Yes Completed for Initial Report

Interim report Yes Completed for Initial Report

Risk Assessment Yes Completed for Initial Report

Additional initial
research

Yes Completed for Initial Report

Detailed Spec No A detailed spec of the design was not created due to time
limitations, and because of its limited use. It was cancelled
to free up the time for more important tasks.

UML Diagrams Yes Created for Interim report

Activity Diagrams Yes Created for Interim report

State Diagrams Yes Created for Interim report

UI Design Yes Created for Interim report

Graphic Design /
Visualizer Designs

No Due to how shaders are implemented, designing them
would take time away from actually building them, and the
rough ideas would look very different from the finished
product. Instead it was opted to build them without
previous designs.

FFT Research /
Libraries

In Progress This is currently being worked on.

OpenTK / Shader
research

Yes

Concurrency research No This was deemed unnecessary, and overkill for the project.
It would only add to the complexity of the program and
challenge the already tight schedule.

Hardware Research Yes

Basic Visual
Response

To Start FFT not yet implemented.

Prototyping In Progress This is currently being worked on.

Prototype Notes In Progress This is currently being worked on.

Basic FFT
Functionality

To Start The complexity of FFT forced this task to be delayed to
allow the rest of the program to be developed.

Change Notes To Start

Class and program
structure

Yes The prototype follows the class structure that is contained
in this document.

Beats per minute
calculations

No It is unclear whether this task can actually be completed,
as it heavily depends on a variety of factors providing the
information necessary for this to be calculated.

Additional debugging
and info gathering

To Start Prototype not in a state to debug.

Graphics / Shader
implementation

To Start Shaders not yet implemented.

More testing with FFT To Start FFT not yet implemented.

Concurrency No Unneeded.

Functionality Testing To Start Prototype not in a state to test.

UI Testing To Start Prototype not in a state to test.

Response Testing To Start Prototype not in a state to test.

Device Testing To Start Prototype not in a state to test.
Figure 15 - Comparsion of tasks from original task list to what is currently completed.

When the task list was originally set out, it was noted that this was for the first half of the

project. However, as the project has gone on and tasks have not been completed for in time

for this “Half-way” deadline. This lead to a restructuring and a reprioritizing of tasks, and

eventually cutting away features.

A new task list has been designed to represent these changes as well as a new timeplan

(Gantt chart). Note this only covers tasks that have yet to be completed.

Task Description Duration
(Days)

1 Prototyping Build and test features to see what works and can be
added to the program.

18

2 Graphics / Shader
development

Develop visualizers using shaders in external tools. 7

3 Graphics / Shader
implementation

From the previous task, implement shader work into the
program.

7

4 Functional Prototype Build a prototype that is “Functionally complete” from a
usability perspective. (See below for details)

18

5 Functionality Testing Test features present in the prototype, polish and refine so
that they work to the fullest extent.

3

6 UI Testing Test the UI to see if it works and fix any possible bugs that
may occur.

3

7 Device Testing Test on the PlayStation Vita if possible. 1

8 Prototype Notes Evaluate the prototype, notes on the program structure,
things to change and improve, and so on.

1

9 FFT Research Continued research on Fourier Transformations. 20+

10 Basic FFT
Functionality

Build an additional prototype for audio/visual tests. 20+

11 Basic Visual
Response

From using FFT test, generate a visual response of some
kind.

20+

12 Change Notes Note where you would change the program to implement
the new visual response.

3

13 Audio data
interpretation

Use FFT and other tools to read and understand audio
data, and use it to define genres, speed, etc. and use that
to modify aspects of the program/shaders.

15

14 Additional
debugging and info
gathering

Any additional testing and information gathering that I
could do.

7

15 More testing with
FFT

Any additional tests that could be performed with FFT. 5

16 Response Testing Test audio/visual response. 3

17 Device Testing (2) Test the FFT implemented version of the program on the
PlayStation Vita to see how it performs.

1

The main difference being that the rest of the program is developed before even attempting FFT implementation. Early on in the project, FFT

was the main focus and planned to be one of the first things to implement. This became one the largest reasons as to why the project went

heavily behind schedule. Bluntly put, I heavily underestimated the complexity of Fourier transformations and their implementation. Weeks were

spent researching with very little progress, on top of trying to start building a prototype on top. In the new time-plan, FFT research and

implementation now take place towards the end of the project. The reasoning for this is that, even if FFT cannot be implemented fully, the

groundwork will be there to be worked on, while the rest of the program will work as previously promised, and from a usability standpoint, near

commercial standard.

Current Progress
The current state of the project is the prototyping stage. A “Functional” prototype is currently

being built. What is meant by “Functional” is that, it will meet user standards of functionality.

Meaning it is “Feature Complete”. The prototype should be able to load in the user’s music

folder on the PlayStation Vita, display all the tracks on the screen and allow them to select

the one to play. Following that, it should start to play the music on a new screen where the

media controls are, and the visualization in the background.

If it meets this specification, it will be complete from a feature standpoint. Even without FFT

to create accurate visual representation, there should still be a visual accompaniment to the

music. So when the user uses the program, all of the features that they would expect to be in

a program like this will be present and functional.

Currently the prototype is being created in PlayStation Mobile, and the shader code will be

implemented into it. The shaders will be developed using another piece of software; most

likely Shader Tool, ShaderToy, or GLSL Hacker.

Revisions and Changes in Project
As mentioned previously, several changes and decisions were made during the first several

months of the project. One of the first was the decision to change from PlayStation Mobile to

OpenTK. There reasoning for this was that it provided more information and lower-level

access to media files. It should be noted that this decision was made during the point when

FFT implementation was a priority and it had not been fully acknowledged to be as

challenging as it is.

OpenTK presented problems of its own however. While in PSM, audio playback is trivial; in

OpenTK, it requires more work. Additionally, graphics and drawing code require more work

to use. In general, more work is required for a similar result. As the project progressed, and

FFT was postponed, it became clear that using OpenTK was becoming more and more of a

time sink with little to no progress being made in the most basic of features. As such, near

the half-way point of the original project timeline, the OpenTK prototype was scrapped in

favour of going back to PlayStation Mobile. However, the difference this time is that the

prototype will not use FFT, and that will be developed and researched separately.

The program structure was something that was redesigned several times. Initially, there was

no real concrete design for the program, as my understanding of all the features that should

be a part of it was not fully developed. As it switched from PSM to OpenTK, the program’s

structure became more defined, as Figure 8- Designs 1 and 2 of the program. shows.

Multiple versions of that structure were created and revised, the one described above shows

the version used in the OpenTK and PSM prototypes which was deemed to be fit for

purpose and efficient.

Appendices

Figure 1:
http://upload.wikimedia.org/math/7/8/d/78d7430f6a1b49856959b95895337621.png

From the page : http://en.wikipedia.org/wiki/Sound_intensity

Figure 2 :
http://upload.wikimedia.org/math/6/b/1/6b141c2ca91d0666c4f52f7c9c3bb931.png

From the page : http://en.wikipedia.org/wiki/Sound_intensity

Figure 5:
http://betterexplained.com/wp-content/plugins/wp-

latexrender/pictures/45c088dbb767150fc0bacfeb49dd49e5.png

Figure 6:
http://betterexplained.com/wp-content/plugins/wp-

latexrender/pictures/faeb9c5bf2e60add63ae4a70b293c7b4.png

Figure 7 :
http://gamasutra.com/images/gaia1.jpg

Figure 12:

Task Name Description
Duration

(days)

1 Task List Generate task list of different aspects of the project that
need to be completed.

1

2 Time Management Create a schedule from the task list defining possible
deadlines for tasks and the appropriate time to complete
them. Ideally in the form of a Gantt chart.

1

3 Interim report Write the interim report deliverable 14

4 Risk Assessment Define possible risks to the project and solutions to
these problems.

4

5 Additional initial
research

Miscellaneous project research. 8

6 Detailed Spec A more detailed specification of the project, separate
from the initial report. For personal use.

6

7 UML Diagrams Unified Modeling Language Diagram, defining the major
class and methods within the program and how they
interact with each other.

2

8 Activity Diagrams Create a diagram showing how the user operates the
program which different actions.

3

9 State Diagrams Show the different states the program can be in while in
run time.

1

10 UI Design Design the user interface, such as the display but also
any additional controls.

1

11 Graphic Design /
Visualizer Designs

Design a variety of graphical styles to use as visualizers.
Make notes on how they act and how to build them.

5

12 FFT Research /
Libraries

Gather information on current FFT libraries and their
uses.

12

13 OpenTK / Shader
research

Gather information about OpenTK and Shaders that are
relevant to project

10

14 Concurrency research Research code implementation that will allow for multiple
processes at a time, improving performance.

8

http://upload.wikimedia.org/math/7/8/d/78d7430f6a1b49856959b95895337621.png
http://en.wikipedia.org/wiki/Sound_intensity
http://upload.wikimedia.org/math/6/b/1/6b141c2ca91d0666c4f52f7c9c3bb931.png
http://en.wikipedia.org/wiki/Sound_intensity
http://betterexplained.com/wp-content/plugins/wp-latexrender/pictures/45c088dbb767150fc0bacfeb49dd49e5.png
http://betterexplained.com/wp-content/plugins/wp-latexrender/pictures/45c088dbb767150fc0bacfeb49dd49e5.png
http://betterexplained.com/wp-content/plugins/wp-latexrender/pictures/faeb9c5bf2e60add63ae4a70b293c7b4.png
http://betterexplained.com/wp-content/plugins/wp-latexrender/pictures/faeb9c5bf2e60add63ae4a70b293c7b4.png
http://gamasutra.com/images/gaia1.jpg

15 Hardware Research Make documented notes about the Vita’s hardware,
detailing positives and negatives in relation to the
project.

2

16 Basic Visual
Response

Provide a basic video/audio response. 11

17 Prototyping Prototype the implementation of the software, with basic
visual response and shaders.

8

18 Prototype Notes Make notes on tests performed on the prototype. 11

19 Basic FFT
Functionality

Use FFT to generate a waveform on screen. 4

20 Change Notes Notes about changes in the software’s design based on
the information gathered from the prototype.

2

21 Class and program
structure

Build the program based the class designs made
previously, plus any additional improvements or
features.

4

22 Beats per minute
calculations

Investigate the possibility of using an algorithm to
calculate BPM.

8

23 Additional debugging
and info gathering

Miscellaneous bug testing and additional info that may
be relevant.

15

24 Graphics / Shader
implementation

Implement the graphical elements, multiple visualizers
and so on.

14

25 More testing with FFT Further testing to see the full extent of FFT. 7

26 Concurrency Implement multi-processing to try and improve
performance.

16

27 Functionality Testing Test against the activity diagram and feature list to make
sure user functions work as intended.

4

28 UI Testing Test to see if all user interface aspects work. 2

29 Response Testing Test to see if the visual response is accurate to the
audio input, and that it produces the intended effect on
the visualizer.

2

30 Device Testing Test to see whether the software works on the
PlayStation Vita system.

1

References
Better Explained, 2012. And Interactive Guide To The Fourier Transform. [Online]

Available at: http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

[Accessed 2015].

Collecchia, R., 2012. Numbers & Notes - An Introduction To Musical Signal Processing. 1st ed.

Portland: Perfectly Scientific Press.

Dodge, C. & Jerse, T. A., 1997. Computer Music. 2nd ed. New York: Schirmer Books.

Klapuri, A. & Davy, . M., 2007. Signal Processing Methods for Music Transcription. Tampere: Springer.

Klapuri, A. & Davy, M., 2007. Signal Processing Methods for Music Transcription. [Online]

Available at:

http://books.google.co.uk/books?id=AF30yR41GIAC&pg=PA8&redir_esc=y#v=onepage&q&f=false

[Accessed Janurary 2015].

Wikipedia, n.d. Sound Intensity. [Online]

Available at: http://en.wikipedia.org/wiki/Sound_intensity

[Accessed January 2015].

