
Page 1

Music Visualizer for the PlayStation Vita

Final Report

Submitted for the BSc in Computer Science with Games
Development

April 2015

By

Adam Connor Lutton

Page 2

Contents

Introduction ... 4

Aim and Objectives ... 5

Objective 1 – Create software that loads and plays the user’s audio files 5

Objective 2 – Create basic visual feedback based on the audio track 5

Objective 3 – Create more complex visualizations ... 5

Objective 4 – Improve the algorithm to improve the accuracy and depth of the visual
effect .. 5

Objective 5 – Identify ways to improve the precision of music visualizers....................... 5

Objective 6 – Using audio data to change visualizations dynamically 6

Background ... 7

Audio ... 7

Structure of Sound ... 7

Digital Sound ... 8

Technologies ... 8

Alternative Solutions & Tools ... 10

Algorithms ... 11

Processes & Methodology ... 14

Technical Development ... 15

System Design .. 15

Class Design .. 15

Shader Design ... 17

Activity Diagrams ... 19

UI Design .. 21

Experimental Design ... 23

Test Design ... 23

System Implementation ... 25

Evaluation ... 28

Objectives achieved .. 28

Objectives failed .. 28

Limitations of the project .. 29

Further work .. 30

Conclusion .. 32

Appendices ... 33

Image Sources: .. 33

Original Class Diagrams .. 33

Original Activity Diagrams .. 35

Original User Interface Design ... 36

Page 3

OpenTK OpenAL Code Sample ... 37

Previous Time Plans: ... 38

References ... 40

Page 4

Introduction

This project is intended to produce a music player for the PlayStation Vita mobile games
console. Part of this software is “Music Visualization”, a term describing the use of graphical
effects displayed on screen that are manipulated or distorted either in time with the beat of
the audio, or just as a general accompaniment of the audio.

The project’s focus was to research techniques relevant to the creation of these pieces of
software, and to devise ways of improving their functionality if possible. As development
continued, the scope expanded beyond just the PlayStation Vita, and focuses more on the
general development of the software from a platform-agnostic point of view.

This document details the project’s final progress, stating the background subjects that relate
to the underlying processes and ideas that the project is based on, various tools and
algorithms used in the creation of the software, techniques and methodologies, algorithms,
relevant testing, and finally a reflection of the project as a whole.

Development has not gone smoothly and a number of problems have stemmed progress
significantly. The majority of objectives that were originally set out have not been met
because of this. This document details the final designs for implementations for currently
working aspects, and working designs for the processes that are not yet fully implemented.
Specifically speaking, the music playback prototype in PlayStation Mobile was completed
and demonstrates the possible user-end functionality that is expected from the final program.
However, because of the lack of lower-level audio APIs, a new prototype was constructed in
SFML which became the main prototype till the end of the project, and provided a platform
for developing the functionality to produce graphical feedback to audio data.

However, the time wasted during the early parts of the project made development difficult,
and the SFML prototype does not fully implement the proposed solutions to the problem.
That being said, the overall design is present and demonstrates the processes at work within
the program.

Page 5

Aim and Objectives

The purpose of this project is to create a music visualizer for the PlayStation Vita system,
which provides an accurate visual response to an audio input.

This will be obtained by completing a number objectives that deal with multiple aspects of
the project. They are listed as such:

Objective 1 – Create software that loads and plays the user’s audio files

Use the tools and APIs acquired to load in the user’s audio tracks and play them within the
program. Furthermore, the ability to switch tracks, pause, and resume. Essentially recreate
already existing features from previously obtainable hardware and software used for media
playback. Various techniques and tools can perform this, including PlayStation Mobile, Open
AL, and SFML. In terms of implementation and testing, it is arguably the easiest part of the
project in both of these fields.

Objective 2 – Create basic visual feedback based on the audio track

A visual response that responds to the beat of the track, or at the very least shows the
variation within the track based on the audio data. The visual response needs to be basic,
and just more or less proves that the algorithm(s) work correctly. In terms of graphical
interface, it needs to be as simple as colour changes at intervals of the music. In terms of
implementation, an algorithm needs to be created that samples the audio in real-time, and
then sends that data to the shader where it can be used to manipulate the visual effect.
Testing does not need to be precise, but it does need to show some differences in visual
effect just to understand if the algorithm works.

Objective 3 – Create more complex visualizations

Based on the algorithm’s success, more complex graphical effects can be created, possibly
including waveforms, shapes, particles, and so on. All the shader work will be done in the
GLSL shader language, and will be tested in software such as AMD Render Monkey, GLSL
Hacker, and ShaderToy.

Objective 4 – Improve the algorithm to improve the accuracy and depth of the
visual effect

Various aspects of the algorithm should be improved to increase efficiency and usefulness.
The former is a crucial aspect due to the program requirements, the audio data needs to be
calculated in real-time, and any slow down or hang up on the algorithm’s end would cause
the audio and visualization to be out of sync. In regards to the usefulness, additional code
could be added that would allow for the recognition of patterns or specific sounds. In terms
of implementing and testing that, it would require the results to be previously calculated and
then compared to the output.

Objective 5 – Identify ways to improve the precision of music visualizers

Considering the progress made with the program, additional research is to be made on how
music visualizers could become more accurate or detailed. Aspects such as instrument
recognition, musical patterns relating to genre (Beats Per Minute), and an assortment of
other aspects of sound. Additionally, differences between analogue and digital sound should
be pointed out, as research into this subject might return results on both.

Page 6

Objective 6 – Using audio data to change visualizations dynamically

Depending on the progress made in Objective 5, it should be feasible to distinguish different
genres of music and have the visualizer change accordingly. Testing for this would be
extremely problematic due to the large variety of genres, mixing of styles, and the occasional
piece that “Goes against genre conventions”. Because of that, this aspect of the project will
need to be quite nonconforming to typical genre definitions in order to work appropriately.

Page 7

Background

Audio is a deep subject with many intricacies, especially in its composition. The subject
becomes more complex once the divergence between analogue and digital sound becomes
clear. Moreover, the structure of sound is a subject that is needed to be understood if the
idea of audio recognition is to be grasped.

Audio

Structure of Sound

The underlying aspect of music visualization is data processing. However, producing a visual
image from audio data can be done in many ways. The differing factor is the dissimilarity
between analogue and digital sound.

Analogue sound consists of several different components, the four main ones being; pitch,
loudness, duration, and timbre.

Pitch is defined as a frequency related scale that is designated from low to high. Specifically,
it is defined as the frequency of a sine wave that is matched to the target sound that human
listeners would expect. In relation to this project, pitch is the defining factor for audio
representation, as the process of calculating the wave form heavily relies on the initial
frequency of that sound at a given point. (Klapuri & Davy, 2007)

Loudness is defined by its physical properties within audio space. In terms of audio signals
however, we tend to apply logarithmic scale based on its magnitude, known as the decibel
scale. (Klapuri & Davy, 2007)

The general decibel range for music is around 60-115 dB. However, this can be amplified
depending a user’s volume setting if listening through speakers or headphones. In regards to
music visualization, digital music works in such a way where loudness of the track likely
would not cause effect, at least not in the traditional sense. Instead, it’s merely replicated via
the level of bit samples at a specific point, but the actual volume itself is controlled by the
user through the device’s volume settings.

Sound Intensity describes the amount of sound and its general direction at a given position.
In terms of its calculation, within real-world space it is denoted as:

Equation 1: Equation for calculating the intensity of a sound. See Appendix for image source.

“I” equates to the sounds intensity (Magnitude). “p” defines the sound pressure and “v”
defines the particle velocity. Both I and v are defined as vectors.

Timbre is an aspect of sound that specific relates to music. It is often referred to as a
sound’s “Colour” and relates to how we recognise sound sources. Specifically it relates to
how you can have two different instruments play at the same pitch and volume, but are still
distinguished by their timbre. (Klapuri & Davy, 2007)

Somewhat related to this is the ADSR Envelope which is the structure of a sound when
playing on a music synthesiser. It defines the Attack time, Decay time, Sustain level, and
Release time of a sound. Specifically it recreates the sine waveform of a sound to replicate
that of a particular instrument, creating a similar sound. This deals with the more digital side

Page 8

of this subject, as well as the creation of music compared to audio data analysis. (Dodge &
Jerse, 1997)

Frequency is also an aspect of sound worth looking into. The range of human hearing is
roughly between 20 Hz to 20 KHz (Rosen & Howell, 2011). Human speech and musical
instruments lie at various points in this scale. Specific notes regardless of instrument,
produce an explicit frequency range. For example; on a Piano, the first C note produces an
audible frequency of approximately 33 Hz.

Digital Sound

Digital sound still has all of these aspects in terms of human perception, but an additional
factor of bit-rate, bit-depth, and sampling rate comes into play when analysing and
understanding audio data.

The Bit-Rate is calculated as such:

Bit Rate = Sample Rate * Bit Depth * Channels
Equation 2: Calculating Bit Rate of an audio sample.

Sample rate outlines the amount of samples processed within a given time (CD audio is
processed at 44.1 KHz; or in other words, 44100 samples a second), Bit Depth defines the
amount of information that can be held in each sample, and Channels describes the amount
of separate audio channels there are (E.g. If a song is in Stereo, that’s two channels that can
send audio data to left and right speakers. Mono would be one channel).

In regards to this project, bit-depth and the information stored within the samples are key to
understanding audio samples, at least within a Pulse-Code Modulation format (WAV and
other raw audio formats). The reason for this is that .WAV is the format is used for the
software, saving time having to create methods of decrypting compressed audio formats like
MP3 and such.

The bit-depth of most audio formats is about 24-Bits (MP3), file types such as FLAC can
improve the resolution up to 32-Bits. Regardless, the bit-depth provides a large range of
integer values that could possibility be contained in each sample. So at 24-Bit, each sample
could contain any value between −8,388,608 to 8,388,607.

Technologies

Due to this project being primarily aimed at a target device, the PlayStation Vita, the
technology that could be used was limited at first. The only open avenue for development on
the system that did not require a development kit was the use of PlayStation Mobile.
However, other opportunities have been explored to try and improve aspects of the project,
unfortunately, it has had to move away from developing on the platform exclusively as a
result.

PlayStation Mobile (PSM) is an IDE for developers to create applications and games for
PlayStation Vita and compatible Android phones. These programs are created in C#, using
PSM Studio and UI Composer (For user interface elements).

The creation suite it provides is similar to the XNA toolset. PSM Studio keeps game content
(Assets) within its own directory, and various class names are the same. There exists some
differences. PSM uses MonoGame, which has the underlying framework of OpenGL.
Therefore there exists dissimilarities between it and XNA based solely on the differences in

Page 9

how they handle individual elements. Curiously enough, PSM does use a shader language
close in structure to HLSL (The DirectX shader language) compared to OpenGL’s GLSL
language.

In relation to audio, PlayStation Mobile’s audio library only has support for two file types,
WAV and MP3. More of an issue is that WAV is used for the Sound class and MP3 is used
for the BGM class. The Sound class if used mostly for sound effects, so there are limited
options available for controlling audio playback. The BGM class has these options however.
But the more underlying problem is that there is no access to the underlying audio API,
meaning there is no access to the data stored in the audio buffer.

The IDE’s stability is fine, but the process of getting programs on to the target device is more
of a hassle compared to something like Android development. First, one has to sign up as
developer and obtain the development tools, plus the additional cost (Although it has been
released as free for the past two years) of getting a publishing license, which is required for
development on a target the device. Secondly, within the publishing tools, a developer has to
acquire a publishing key, a software key, and a device key. Only after syncing all of these
can the software be pushed on to the device. This process is extremely troublesome and
fails frequently at the key syncing procedure.

OpenTK is a C# wrapper for OpenGL, thus containing pretty much all the features that
OpenGL contains. This includes OpenAL, which is the audio component of OpenGL
development.

A good benefit of using OpenTK is GLSL. Unlike PSM, OpenTK allows developers to write
native GLSL code and have it work, therefore not requiring any additional learning of a new
language.

Unfortunately, the largest problem with using OpenTK, especially for this project; is the
amount of set up required to get the most basic of shapes to draw and setting up audio.
Considering the core of this project is to analyse audio and produce graphical effects, having
a large amount of time spent on just setting up the systems to produce that is troublesome
and leads to spending time and effort is parts that other API could handle in less steps.

SFML is another C# library. It is also based on OpenGL. However, the toolset is aimed for at
creating programs quickly, and ease of use.

Much like PSM, there are a considerable amount of similarities to the XNA framework. For
differences; content handling has to be controlled on the developer’s end, and it is possible
to use OpenGL libraries directly. Additionally, it also has support for GLSL shader language.

The audio library is simple to use, but allows low-level access to the audio buffer. This is
singularly important as to why this software was used for this project. Setting up an audio
track takes a few lines of code:

Music test;
…
test = new Music(“test.wav”);
…
test.play();

Figure 1: Setting up a musictrack using the SFML library.

Page 10

Additionally, a custom audio stream can be set up and given additional methods, improving
the functionality and giving the developer more control. Furthermore, direct access to the
audio buffer is available, meaning it is possible to see the contents of every sample.

For an example of how this compares to OpenAL code, see the appendix.

The downside to using the SFML library is that it is not compatible with the PlayStation Vita,
so any program created on it would be exclusive to PC. On the other hand, it can be used to
research and test algorithms until a solution is found. In this project, it has been used to help
understand the underlying processes that a music visualizer is based on.

Alternative Solutions & Tools

Other libraries turned up during research and prototyping, the two main ones being FMOD
and Windows Core Audio.

FMOD is an industry favourite, being used in various software projects, especially games. It
is split into multiple toolsets.

 FMOD Ex – For sound playback and mixing

 FMOD Studio – Audio creation tool

 FMOD Designer – Audio designer tool for sound events

 FMOD Event Player – Described as a auditioning tool to work in conjunction with
FMOD Designer

(Firelight Technologies, 2002)

For this project, FMOD Ex would be adequate. However, it would have required a custom
engine to be built with it implemented as the audio API, or use one of the already existing
engines. The former would have taken more time to create, while the latter may not have
given as much access to low-level processes.

An additional problem with both FMOD and Windows Core Audio is that they are both C++.
This is not desirable due to inexperience with the language and the skill level required to use
it efficiently. Fortunately there do exist wrappers for both of them, but at the point that was
found, the usefulness of SFML had already become apparent as being the most appropriate
for the task.

During the course of development, considerations towards how the graphic visualization

should be implement lead to the thought process and research of visuals that did not react to

signal processing at all. What is meant by this is that the on-screen graphics are deliberately

not synced up or related to the audio track playing in anyway.

Examples of this exist, the PlayStation 3 has multiple visualizers which only display images

that do not relate to the beat or pitch of the music at all. For example, the visualizer that is

just a 3D model of the Earth with the camera rotating around it.

Page 11

Figure 2: The PlayStation 3's Earth Visualization.

This led to a design decision that multiple visualizers could exist within the program. Some

would accurately represent the music through its graphics by processing the signals, and

others would just draw random visuals that are completely separated from signal processing.

An advantage to developing these visualizations is that they can be developed relatively

quickly, as they do not rely on configuring with algorithms nor do they require testing to see

whether the synchronization is correct.

Algorithms

Various algorithms exist for the actual process of producing the data needed to create the
visualization.

Pre-loading segments or even the whole audio buffer into a part of memory with an
additional reference to the time when a sample or segment of samples would be played.
Then during the program, you would check the time to the list of samples and use a segment
of samples to generate the graphical change on the visualizer.

Specific issues about this algorithm will be discussed later on during the Technical
Development part of this document. None the less, an issue that does become present
based on the theory of the algorithm is loading the contents of the buffer. Considering the
amount of samples can be into the millions, the program will hang up while it loads, and the
user will have to wait till this process is completed before being able to listen to their music.
Considering it will likely do this for each song, it is a significant issue.

The previous algorithm can be altered for real-time use. Instead of pre-loading the contents
of the buffer, you simply read what is in it based on the time. This does alleviate the front-
end loading by a considerable amount. However, the process needs to be done relatively
quickly so the visualization does not fall out of sync with the audio. Although relatively
speaking, there is some flexibility in how in-time the graphic response needs to be.

Music visualizers typically provide a response at each step (1/20th of a second, 0.05
seconds), and providing that the sample rate is 44100Hz, that is 2205 samples a step. Both
algorithms would be passing that information into an additional algorithm that alters the
shader that generates the graphical effect.

During research for this project, a common technique that appeared frequently was the use
of a Fourier Transform, specifically a Fast Fourier Transform.

Page 12

Traditionally, a Fourier transformation breaks down a signal into the frequencies that
construct it. There are various forms of the algorithm for different purposes, including
discrete or continuous calculations. A Fast Fourier Transform computes the Discrete Fourier
Transformation (DFT) and its inverse, which is a conversion of a finite list of equally spaced
samples into a list of coefficients of a finite combination of complex sinusoids (Sine waves).
(Van Loan, 1987)

Essentially, it converts time to frequency, and vice versa; if used in a traditional sense.

Here are the algorithms for calculating the DFT for frequency and time:

Here is the algorithms for calculating frequency and time:

Equation 3: DFT Algorithm for calculating time where Xk is equal to frequency

Equation 4: DFT Algorithm for calculating frequency where Xn is equal to Time.

Image sources in Appendix.

Xk represents the amount of the Frequency k in the signal.
xn represents the value of the signal at time n.
n is the current sample being used.
k is the current frequency.
N dictates the total number of samples.

The first figure calculates the amount of times a particular frequency has occurred over a
number of samples on a given time spike. The second figure describes all the frequencies
that have occurred at a given point in time. The algorithm itself can produce a graphical
waveform, like so:

Page 13

Figure 3: Example of an FFT waveform in a graphical form. Image source in appendix.

There are a number of FFT algorithms available, such as; Cooly-Tukey, Bluestein, Bruun,
and others.

Cooley-Tukey is the most commonly used FFT algorithm. It’s a divide and conquer algorithm
that recursively breaks down a DFT of a composite size into many smaller DFTs. The others
also make use of recursion, but are often used for different tasks or involving different
dimensions of data.

For this project, FFT would be used to calculate a waveform based on a cluster of samples
representing a section of the audio track, possibly every step or second. It should show the
occurrence of certain sample values appearing through that section, and through the whole
song if calculated continuously.

The major problem with using this algorithm is that it is rather intensive. Although the
specifics of this will be detailed in the Technical Development section; trying to execute this
method will cause hang ups in the program without the right optimizations. The previous
algorithms mentioned all calculate DFT exactly, with no errors. If this equation was to be
used for real-time calculations, it would need to calculate the DFT approximately. Of course,
this could lead to potential errors, but this would like not cause much difference to the
visualization. Various algorithms have been proposed for this, such as an approximate FFT
algorithm proposed by Edelman (1999) by achieving lower requirements for communication
through the use of a Fast Multipole Method.

Another approximate is the Wavelet-based approximation proposed by Guo and Burrus
(1996) takes sparse inputs and outputs (Time/Frequency) into account more efficiently that
is possible with an exact FFT.

It is not possible to use these algorithms as is, but helps create an understanding of the kind
of algorithm that will be need to correctly generate a waveform pattern based on the audio
data from the buffer. Furthermore, when translating audio data into this algorithm, the data
that the program produces may not be compatible with the equations provided. Therefore it
is necessary to create one.

Page 14

Processes & Methodology

The process this project uses is heavily based on the prototyping model. This means that
there were initial designs set for the project which were then iterated upon or changed
depending on the results of testing.

The reasoning behind using this methodology was due to the amount of techniques that
were found that improved or streamlined processes within the project. For example, there
exists multiple prototypes that use different graphics and audio libraries while experimenting
early on in the project, trying to find an appropriate API to use.

The prototyping model contains several different types of prototyping methods.

 Throwaway Prototyping – Creating a prototype (Or multiple prototypes) that will be
later discarded, but is created to become a proof of concept to show how a program
could work based on the requirements the user what it might become. After the
design is improved based the prototype(s), it is scrapped and full development
begins based on the improved design.

 Evolutionary Prototyping – This is different to Throwaway, as there is one prototype
and is continuously iterated on and improved over time. It eventually becomes the
heart of the new system and further enhancements will be added.

 Incremental Prototyping – There exist multiple prototypes that all come together to
form an overall design or system.

(There also exists Extreme Prototyping, but that is primarily used for web development,
hence is not referenced)

At the start of the project, there was a heavy use of throwaway prototyping. Aspects of the
program were built with different tools and designs, finding out which methods or designs
were most efficient and what tools were effective in achieving the objectives set out in the
design. As the project continued and tools and designs were finalized, it switched to a more
evolutionary prototype design, where more aspects were added on and the overall design
improved.

The benefit of this model is that it allows developers to see what ideas work quickly, and
allows them to iterate and improve them early on in the project, instead of changing it later
when it could be more costly or problematic. It is especially useful when the developer has
continued user involvement, where the constant feedback allows them to iterate and change
functions based on user feedback, removing any possible misunderstandings between the
client and the developer. It does rely on the client’s ability to be available for constant
communication.

There are very few, if any, disadvantages to the model. Prototyping can be done quickly and
cheaply and helps the developer understand many of the issues with the project. It has
improved this project by allowing a greater understanding of the problems that exist with
using specific tools or methods.

Page 15

Technical Development

System Design

Class Design

The class design of the program is split. In relation to previous designs (See Appendix for
older designs), the playback features of the application has not changed significantly.
However, that aspect exists within its own prototype for individual testing purposes. This is
the current state of the playback aspect of the program

Figure 4: PlayStation Mobile Prototype Class Diagram

In terms of the differences, there have been no significant changes. Minor modifications
have been made to either improve efficiency or alterations to make it work with PSM in the
first place. One of the major problems while building the PSM prototype was utilizing the UI
Composer software and having the generated classes it created be compatible with the
already existing classes.

The MusicPlayer class interfaces with the UI composer class that is paired with it. The UI
class listens for interaction via an Event Handler, which then tells the main MusicPlayer
class to perform an action, which in turn interacts with ActiveTrack. Everything else about
this process has remained exactly the same to the originally proposed class structure and
works without issue. Also contained with the ActiveTrack is a reference to a class

The second prototype uses a different class structure that focuses more on obtaining and
processing the audio, passing it along to the shader, and then generating continuous
graphical feedback.

However, due to different algorithms, there were multiple designs used.

Page 16

Figure 5: Class Diagram for the pre-loading algorithm.

The GameWindow class contains the Load, Update, Draw, Unload, etc. classes that one
would expect. Due to the prototype having a specific function to test, the structure is not
overly complex and most parts of the program can work within the GameWindow class.
Within GameWindow it loads up just one audio track (The PSM prototype already solves the
music playback problem, therefore those features are not implemented) in the music class, it
then loads the same song into a MusicStream class. The reason for this is that the
MusicStream class provides access to the buffer, while the general Music class, that is part
of the SFML library as standard, does not. MusicStream inherits from another SFML class
called SoundStream. That being said, MusicStream is not used for this prototype, as the
buffer can technically be declared separately and used outside that class. MusicStream
actually exists for audio formats that are not WAV or OGG formats, but implementation was
not added as it was not needed to test that particular functionality at this point.

The last class, which differentiates it from the real-time design, is the DictOfSamples. This
class would contain the content of the buffer at a specific time, and would call each sample
when the corresponding time would appear when playing the song. Specifically, it would
store a value from each step (1/20th of a second) in a track, and hold in a dictionary within
the class. It was relatively simple solution, but contained a lot of front-end loading.
Additionally if the user were to change songs on the fly, it would require the program
stopping for a few seconds to load the buffer into the class, which ruins the user experience.

This lead to designing an alternate solution that would lend itself more to real-time
calculations.

Page 17

Figure 6: Class design for the real-time algorithm

The real time program removes the dictionary storing entirely in favour of gathering
information out of the buffer based on the time in the song and the sample rate. For
example, for the first second of the audio track, you would obtain data samples contained
between the first and 44100th sample; and for the next second, between the 44101th and
88200th samples, and so on.

Now depending on the current shader is you could produce an average sample value or the
whole range of data (FFT is ignored for this example, but the data range could be used in its
calculation) into the shader to allow it to generate the graphical effect.

The method removes the possible hang ups that occur between songs, but now creates a
new problem of slowdown during the program execution. This would cause a
resynchronization between the audio and visuals. But that also relates to how many times a
second the calculation is performed. In this example it’s once every second, but it could be
modified to be performed every step where that issue might be more prominent, but at the
same time, less samples would be present in the calculation.

Additionally, a way to ease up the calculation would be through the use of multi-threading,
but the results generated from the prototype do not suggest this is entirely necessary.
However, said prototype has not been tested on the target hardware of the Vita, which is
considerably slower than the PC it is currently being built and tested on.

Shader Design

In previous designs (See appendix), the shaders were controlled through a shader controller.
This loaded the shaders into the program, and then allowed them to be interchanged via the
ActiveShader class; very similar to the music playback system with the ActiveTrack class.

Page 18

Since the previous design, an additional part of the shader is the data being transferred into
it. Depending on the shader, an average value of the range of samples being calculated
could be passed into it, or the range itself. The former would be used for more basic
visualizations (Basic shape deformation for example), and the latter for more complex
graphical effects (Waveform generations, positioning, etc.). Additionally, there will be
shaders that do not use this information at all, and produce a graphical effect completely
separated from the audio data.

The shader controller would define the differences on load when compiling them into the list,
and have the ActiveShader change depending on the type being used. In terms of code, it
looks something similar to this:

In this code, the type of shader required is decided through the use of an enum type called
ShaderType, which contains the set of different forms shaders. Later on in the program, a
switch statement which processes to perform based on what the enum is set to.

Enum ShaderType { usesRange, usesAvg, noData}
ShaderType type;

…

Switch (type)
{
 Case ShaderType.usesRange:
 //Shader uses range of data
 Break;
 Case ShaderType.usesAvg:
 //Shader uses average
 Break;
 Default:
 //Shader doesn’t use audio data
 Break;
}

Equation 5: Code showing the use of enum to decide shader type.

Page 19

Activity Diagrams

Here are three activity diagrams that show the functionality of various parts of the program.

Track Switching:

Figure 7: Track switching activity diagram.

The track switching process activates once it detects the relevant button on the UI has been pressed, via an EventHandler within the
MusicPlayer.composer class. That EventHandler then calls a method within the MusicPlayer class, in this case the Next() method. That in turn
calls the Next() method within ActiveTrack. There it checks to see whether there is another song that is meant to played in the list of tracks, if
not, it returns to the first track in the list. After switching the song, it entering a playing state.

Page 20

The activity diagram remains the same for the Previous button also.

Play and Pause function:

Figure 8: Play/Pause functionality activity diagram.

Much like the previous task, the Play Button being pressed activates an EventHandler. An enumerated type in the class MusicPlayer called
IsPlaying defines the current playing state of the audio track. If the program has just started, it calls the Play() method. Elsewise, it calls either
the Pause() or Resume() methods if the song is playing or paused respectively. These methods in turn call the relevant methods within the
ActiveTrack class.

Page 21

Shader Switching:

Figure 9: Shader switching activity diagram.

Upon the EventHandler detecting that the user has requested switching the visual effect, the SwitchShader method is called. The current
shader is halted in execution and disposed of, then a new shader is loaded in for the current object. At the same time, information from the
audio buffer is continued to be passed through. The new shader is set and is executed with the audio data.

UI Design
Based on the previous designs (See appendix.), the playback UI for the music player portion of the program was implemented.

Page 22

Figure 10: User Interface from the PlayStation Mobile prototype.

It is slightly more simplified than the original design. Song and time information does not display, nor does selecting the status bar take you to
that point in the song. Other than that, the status bar animates correctly, and the button functionality works as intended. The simple design
keeps cutter from interfering from the usability.

Page 23

Experimental Design

The prototyping model forces experimentation by its very nature. Different ideas and tools
are used in a short period of time to produce something, and then those results are
compared to see which provides the best experience.

One of the major experiments within the project was the process of turning the audio data
into usable information for the shader. Specifically, the process of gathering information from
the buffer while the program is running and transferring that information to the shader.

Fundamentally, the audio is loaded and the buffer is passed into the ActiveShader class.
From there, using the sample rate, it gathers a range of samples relative to the sample rate
(44100 samples per second, 2250 samples per step, etc.) and then either generates the
average of those range of values or passes the whole range into the shader.

This algorithm can provide a variety of issues, which is why testing and continued iteration of
it is needed. One of the most prominent issues is that it can become an expensive process,
especially if everything in the program is performed on the main thread. For example, if it
took an exceptionally long time gathering a set of samples for a particular time frame, it
could hold up every other process. This could lead to a delayed graphical response or even
an outright crash if the system detects that it is taking too long on the thread and ends the
program prematurely.

An additional issue the getting a range of data relative to the time and producing the
graphical effect. Amassing the data is not the problem, but making sure the program does
not calculate the same data multiple times a second is. Basically, the problem is that the
program will execute the parts that pass the data into the shader and cause the visualization
to change faster (Given the right processing capabilities) than the time frame the sample
range covers. Thankfully this problem can be solved by moving this process onto another
thread and then getting the process to sleep before executing again for another time frame.

Simply put, it will execute to gather one second’s worth of samples and change the graphical
effect, and then the thread will sleep for one second before performing the task again.

Designing FFT into the program was problematic. The large amount of algorithms that could
be used, as well as the information produced from it being compatible with the rest of the
program were the main factors of consideration when attempting to design for it.

However, the difficulty of the implementation led to it being dropped entirely. The problem
lied in converting the audio data from the buffer into complex numbers that the FFT library
could use, and being able to pass the information from the FFT calculation to the shader.
The former brought the most concern, as the conversion of the data into what is essentially a
vector would require an additional calculation on an already expensive process, and at this
point the program had performance issues due to using the method of pre-loading the buffer
into a dictionary which caused the program to crash.

Test Design

As previously described, the prototyping model used involves experimentation, and by that
definition, testing soon follows. The two main prototypes served different purposes. The
PlayStation Mobile prototype was aimed towards music playback, while the SFML prototype
was targeted at generating a visual response.

Page 24

Here are the tests that were described in the previous report with the results where
applicable:

Test Description Test Result

Start program Start the program and have it boot into
the first screen.

Working

Music loading
in and
displaying as a
list

The first is a complete list of music in
their collection. It should display all
songs with the ability to scroll down
the list.

Not Implemented

User selection The user selects a track. When the
user selects the track it should start
playing the file and move on to the
next screen with the media controls
and visualizer.

Not Implemented

Music playing Music plays. The music should not
skip, stop, or any other issues.

Working

Music pause Music pauses; stops playing until
resumed.

Working

Next Track The next music track is loaded in and
begins playing.

Working

Previous Track The previous music track is loaded in
and begins playing.

Working

Music controls
fade out

After a few seconds the playback
controls should fade of screen to allow
a full view of the visualization.

Not Implemented

Controls fade
in

When the user taps the screen, the
controls should appear again.

Not Implemented

Shader
switching

The visualizations on screen should
change.

Not Implemented

These tests relate more to the end-user experience rather than technical implementation.
Over half are actually implemented, and the ones that are relate purely to the music
playback side of the program.

Testing music playback was a relatively simple set of tests. It involved checking the UI
functionality and whether it behaved correctly. Because of its simplicity, it passed almost
every test the first time round; the only issue being a bug on the play button where it would
display the wrong text, which was fixed by having it change based on the enumerated type
that contained the status of the audio.

The SFML prototype is currently not completed, meaning that only one of the two methods
has been attempted, that being the pre-loaded buffer to dictionary method.

Issues about this method were theorized long before being implemented, and the most
prominent problem occurred. The program would enter a non-responding state when
starting, which was caused by and excessive load on the main program thread. What the
program was doing was taking all 189 million samples that the audio file made out of, and
attempting to load them within a dictionary entry at the start of the program. This process
took so long that Windows automatically prevented its execution.

Although a multi-thread approach most likely would have solved this issue, the approach
was abandoned entirely in favour of a real time version. Unfortunately, the real-time
implementation is not completed and therefore has not been tested. Nevertheless, testing

Page 25

the real-time version of the algorithm would likely be a similar experience in terms of testing
performed.

Both algorithms were meant to be tested and compared in terms of performance, and to that
extent; what could be improved to allow it to perform more efficiency. The real-time approach
would need to prove that it is capable of gathering the relevant data from the audio buffer
and transfer it into the shader without slowdown. Its potential problems have been
mentioned previously, but without testing it is hard to determine whether or not a solution or
workaround can be found.

Another aspect that was not implemented was FFT, but the reasons for this have been
mentioned previously, but an additional reason for it was the general time constraints that
existed near the end of this project.

Regardless, if FFT was implemented; it would need to prove that it was capable of
generating a waveform pattern. It did not need to be an accurate representation, but it did
need to show continuous alterations in line with the audio track playing at the same time.

System Implementation

Due to the project existing in separate project files, implementation of features are separated
from each other and are not part of an overall system. However, aspects of functionally do
exist within the individual prototypes.

In the original design for media playback, there was a sub-system known as the media
controller, which would handle both the loading and active playing of the user’s audio track.
The latter had an additional sub-class known as the ActiveTrack class which handled all of
the playback controls. Revising this design, the ActiveTrack class now contains a FileLoader
object that loads in the user’s files, and interfaces with the MusicPlayer class which handles
the UI elements. Other than that, the implementation from my previous design has not
changed.

The reasoning behind the media controller’s removal is due to how PlayStation Mobile’s
audio library works. The Music class plays audio from a directory, but it does so at run time;
unlike other audio libraries where audio needs to be loaded in at start up. Because of this, it
was not necessary to have a controller for media as the file loading class only consisted of a
few lines of code that generated an array of strings that were the file locations of the audio
data within a specific folder, which in turn can be accessed by the ActiveTrack class.

Here is the contents of the TrackLoader class for the ActiveTrack class:

Page 26

The shader loading structure was already relatively simple in design. Much like the media
controller, the shader controller parent class was removed, and now the ActiveShader class
controls the loading and displaying of shaders. Much like the ActiveTrack class, there is a file
loader that holds the directories for all the shader files. There are also additional unloading
methods for the disposal of shader classes. Other than that, the two are very similar in
design and implementation.

In terms of the ActiveShader class itself, it works as described in the following diagram:

Figure 11: TrackLoader class for the ActiveTrack class.

public class TrackLoader
{
 public string[] files; //Array of file directories
 public TrackLoader ()
 {
 files = Directory.GetFiles("/Application/Audio", "*.mp3");

 foreach (string s in files)
 {
 FileInfo fi = null;
 try
 {
 fi = new FileInfo(s);
 }
 catch (FileNotFoundException e)
 {
 Console.WriteLine(e.Message);
 continue;
 }

Console.WriteLine("{0} : {1}",fi.Name,
fi.Directory);

 }
 }
}

Page 27

Figure 12: Diagram the loading and switcing of shaders.

The file loader contains the directories for each shader, which is then passed into the
ActiveShader class for when it needs to load one. The audio data is passed into the
execution method once the shader is set. Depending on the currently loaded shader, the
data that is passed into the shader from the buffer is either an average from a range of
samples, or the range as a whole.

There is no standard shader design, as each one could take different data types, whether an
array or single float value. There are also shaders which do not use the audio data at all.

As for the sampling part of the program, the buffer is passed into a class which calculates
which range of samples is needed given the time. For example, for the first second of the
audio track, it would need samples [0] to [44099] if the sample rate is 44100Hz. It would
increment from there depending on the track time. That class is stored on its own thread,
and as such can be forced to sleep until it is needed again. This is not the ideal way of
handling this problem, but it is adequate for the prototype. That data is then passed to the
ActiveShader class.

Page 28

Evaluation

Objectives achieved
The only objective that was achieved was the first one; Create software that loads and plays
the user’s audio files.

The PlayStation Mobile prototype fulfils this goal sufficiently, it loads and plays music files.
Although the prototype specifically loads them from a folder that is created by the program
itself and not the PlayStation Vita’s music folder, it still hits this aim.

This objective was not difficult to meet, the prototype was created and finished within less
than a month and contains near to no bugs, and fully demonstrates the playback
functionality that is intended for the actual program. On the other hand, it is the easiest
objective to achieve.

Objectives failed

The second objective, Create basic visual feedback based on the audio track; was not met,
and subsequently every objective after that was also not achieved.

There are a variety of reasons why the second objective failed, most of which will be
mentioned in the next section, but it mostly comes down bad prioritization of tasks which led
to scrapping or re-building several prototypes.

At the start of the project, researching FFT was a priority and development of the software
was quite minimal. As time went on, there was a realization that FFT was becoming less
important in comparison to lower-level access to the audio buffer, which caused the switch
from PlayStation Mobile to OpenTK. Then the difficulties with getting OpenTK to work led to
looking for an easier to work with library which led to using SFML. Unfortunately this look a
considerable amount of time, so FFT design was abandoned and the SFML prototype was
more focused around taking information from the buffer and using it to manipulate the
shader. However, this was started late into the project and did not reach a point where it
meet this objective.

The other objectives required this aim to be complete. For the third objective, the more
complex visualizers needed the algorithm for getting the data out of the buffer working. While
for the fourth, improving the algorithm to allow more depth in the visual effect requires the
algorithm to work in the first place. Likewise with the sixth objective.

Objective 5 does not entirely require the program to work as it partly relates to looking at
currently existing music visualizers realizing their problems and where they could be
improved. But it would have been supplemented with additional experiments into possible
improvements. This objective was more or less ignored in favour of developing the software,
due to the time constraints. Late into the project, any time that was dedicated to the project
was spent developing the SFML prototype, so a more research focused aspect was not
considered.

If restarting the project was a possibility, the SFML prototype would most likely become the
main focus and given the knowledge gained over the course of the development. The major
problem early on in the project was figuring out which aspects of development to look into,
and as time went on; better technologies were found, more knowledge was gained on
particular problems and the under-lying processes that was making up digital audio signals.

Page 29

Limitations of the project

As like any other software project there were a number of problems and limitations which
hindered progress of its development. First and foremost was the obvious, time constraints.
The actual time frame the project was planned for was not the issue, there was ample time
to work on it. However, the lack of focus on direction and switching between technologies
caused the project to get further and further behind in schedule. There was an attempt to
lessen the impact by refocusing and reprioritizing the tasks to try and make up for time lost,
unfortunately it was not enough.

On top of that, other work unrelated to the project took priority at certain points, meaning that
development was often temporarily halted at points for days or even weeks at a time.
However, that was accounted before the project began as a clash of schedules or other work
was predicted during the planning stages.

When devising the original specification, one of the aspects considered was technical
competence. This project required new skills to be learnt and an understanding of
technology and methods not previously used in prior work. For example, PCM formats and
the audio buffer were not aspects that were originally considered, partly because they were
to some extent unknown factors that had to be researched during development after
realising their importance. This could also be accounted towards a lack of research before
the start of the project.

That being said, when it came to actually building and prototyping ideas, there were no
major issues.

Going back to the previous point about the lack of research, there were and continue to be
problems understanding the fundamentals of how typical music visualizers actually work.
There was little to no documentation on the subject, which meant there were no guidelines
for building the program. Moreover, the suggestions that did exist pointed towards using FFT
with no additional explanation as to how it is used and why. Along with a lack of understand
of the subject in general, the addition of this poor documentation led to the first few months
of the project being disorganized and aimless.

Even after the initial rough start to development, continued documentation problems
occurred. PlayStation Mobile’s documentation is horrendous. Specific items can be
extremely difficult to find, and there is poor explanation on how to use the UI composer
features. On top of that, the PSM community is relatively small and rapidly decreasing due to
discontinuation of the service, meaning any questions about the APIs or tools on the
development forums would get no responses back.

Thankfully, community created documentation provided superior explanation of the tools
than Sony’s own documentation site, so the PSM prototype’s progress was not hindered
significantly.

SFML had similar problems with documentation. Certain aspects were explained step-by-
step, explaining the classes and why they were meant to be used, and other parts of the
documentation would show an entire page of code without much explanation. On top of this,
the entirety of the documentation was written in C++, but the prototype was built using the
.NET C# version of the library. This lead having to translate certain tutorials into their C#
counterparts in order to understand them properly. This did not provide an issue for the most
part as the similarities between languages allowed for an easy conversion.

Page 30

An aspect that did require additional consideration was building a custom music stream. The
C++ version of the documentation contains code that does not exist within C# or the .NET
SFML library. Luckily, there was a realisation that a custom music stream was not necessary
for the program and so this avenue of development could be discarded.

One of the less prominent complications of the project was the use of the prototyping model
as a work ethic. Although it does fit the purpose of the project better than almost all other
models, the problem was in the fact that one prototype would be started, worked on for a
short period of time, and then scrapped in favour of a better library or design, which in turn
would be worked on for a short period before also being scrapped.

By the end of the project, there exist 5 different prototypes, only 2 of which had any
significant progress made to them. The OpenTK program was dropped after a few weeks of
development due to being too difficult to understand and time consuming, a PlayStation
Mobile prototype (Different to the Playback prototype) was abandoned due to a lack of low-
level audio APIs, and another program made in C++ was not pursued due to inexperience
with the language.

This points out one of the potential issues with this model, which is that time can be wasted
on building prototypes that could serve no purpose and could be thrown away.

Further work

As mentioned previously, certain objectives could still be met. Producing visual feedback is
well with grasp provided the algorithms proposed work as intended. Provided its success, it
could then be refined and packaged into an actual software product. Objective 5 could
possibly be met considering it is mostly research focused, but the likelihood is that it would
be discarded considering it is not a practical task and would not lead to any tangible
improvements to the software.

In regards to the other potential goals, they were never meant to be implemented within the
timeframe to begin with, but to exist as further areas of research depending on the results of
development. The tasks would require more technical experience and research into various
solutions regarding them before they could be fully realised. Additionally, it would be rather
overkill considering this project is targeted towards the PlayStation Vita and only the Vita,
which has a relatively small user base and is under-powered compared to other devices that
could be used.

There has been numerous mentions towards items that could be corrected at this point. It
ultimately comes down to completing implementation. However, considering the fact that the
PlayStation Vita has a small user base, a very small number of which even use the media
options of the device; it would be best if development was shifted from the platform. On top
of that, during the last few months of development, Sony announced that PlayStation Mobile
will be discontinued for the platform. In regards to this project, it means that the software
would need to go through a different avenue if it were to see continued development on the
device, that being signing up to the PlayStation Partners program and obtaining a
development kit.

On the note, during the course of development, observations about how users consume
music on portable devices has put the feasibility of the project into question. Typically
speaking, a person is not staring at a visualization when listening to music on their phone, it
is either being performed as a task in the background or being listened to through
headphones while the device itself is in the user’s pocket.

Page 31

Music visualizers typically only serve a purpose on a more vociferous device like a television
or media centre. The vibrant constantly changing colours provide an interesting addition to
the overall atmosphere. Unlike on a phone where the feature is almost completely ignored.
This project would serve more purpose on those devices or virtual reality headsets, which if
even the chance, development would shift more in that direction.

Page 32

Conclusion

To conclude, the project has been a failure in terms of failing to meet the original objectives
set out. However, knowledge was gained in regards to the subject. Where the project failed
was in the choice of ideas to pursue early on. These did not bear fruit and caused the project
to fall behind schedule, on top of conflicting responsibilities which took time from
development.

The original time plan proposed at the start of development was over ambitious in retrospect,
and the updated schedule was mostly kept to, but the problems brought on early in the
project had already caused enough damage to sabotage the completion the project within
the timeframe.

The prototyping model did work effectively however. It allowed for rapid development and
testing of ideas and provided a chance to compare technologies quickly. But for reasons
discussed in the previous section, there should have been more thought into what should
have been tested so as not to waste time.

In addition, the general feasibility of the project has been in question for the last few months
of development, which was brought on by the observation of habits and the discontinuation
of the PlayStation Mobile platform.

In the current state that it is in, there is a good chance of the project being salvaged and re-
tooled for other devices, where it could serve a larger user base that would actually have a
reason to use it.

Page 33

Appendices

Image Sources:

EQUATION 1: Sound Intensity image source:
http://upload.wikimedia.org/math/7/8/d/78d7430f6a1b49856959b95895337621.png
From the page: http://en.wikipedia.org/wiki/Sound_intensity

FIGURE 2: PlayStation 3 Earth Visualizer image source:
http://gamasutra.com/images/gaia1.jpg

FIGURE 3:
FFT image source:
http://i.stack.imgur.com/vggiW.gif

EQUATIONS 3 & 4:
Image Sources:
http://betterexplained.com/wp-content/plugins/wp-
latexrender/pictures/45c088dbb767150fc0bacfeb49dd49e5.png
http://betterexplained.com/wp-content/plugins/wp-
latexrender/pictures/faeb9c5bf2e60add63ae4a70b293c7b4.png

Original Class Diagrams

Overall Class Design 1

Game.cs

Controllers

Scene

Objects Shaders

Media Loading

Media Control

Input

Loaded as
external files

http://upload.wikimedia.org/math/7/8/d/78d7430f6a1b49856959b95895337621.png
http://en.wikipedia.org/wiki/Sound_intensity
http://gamasutra.com/images/gaia1.jpg
http://i.stack.imgur.com/vggiW.gif
http://betterexplained.com/wp-content/plugins/wp-latexrender/pictures/45c088dbb767150fc0bacfeb49dd49e5.png
http://betterexplained.com/wp-content/plugins/wp-latexrender/pictures/45c088dbb767150fc0bacfeb49dd49e5.png
http://betterexplained.com/wp-content/plugins/wp-latexrender/pictures/faeb9c5bf2e60add63ae4a70b293c7b4.png
http://betterexplained.com/wp-content/plugins/wp-latexrender/pictures/faeb9c5bf2e60add63ae4a70b293c7b4.png

Page 34

Overall Class Design 2

Game.cs

Controllers

ShadersInputMedia

Loading Playback

Media Controller

Media

Loader

ReadIn()

LoadIntoList()

Playback

Play()

Pause()

Next()

Previous()

Audio Data

Input

ActiveTrack

Page 35

Shader Controller

Shader Controller

Shader Files

ActiveShader

LoadShader()

NextShader()

UnloadShader()

Loads in
Shader files

Original Activity Diagrams

Switching Tracks

ActiveTrack.Stop() ActiveTrack.Unload()

ActiveTrack.Load(currentTrackNo+1)

ActiveTrack =
LoadedTrack

ActiveTrack.Play()

User Clicks For Next
Track

End

Switching Shaders

ActiveTrack.Unload() ActiveShader.LoadNext()
ActiveShader

=
LoadedShader

User Clicks For Next
Shader

End

Page 36

Original User Interface Design

Music Loading Screen

Music Player

Page 37

OpenTK OpenAL Code Sample

(OpenTK)

var AC = new AudioContext();
var XRam = new XRamExtension(); // must be instantiated per used Device if X-Ram is
desired.

// reserve 2 Handles
int[] MyBuffers = AL.GenBuffers(2);

if (XRam.IsInitialized)
{
 XRam.SetBufferMode(ref MyBuffer[0], XRamExtension.XRamStorage.Hardware); //
optional
}

// Load a .wav file from disk. See example code at:
//
https://github.com/opentk/opentk/blob/develop/Source/Examples/OpenAL/1.1/Playback.cs
#L21
int channels, bits_per_sample, sample_rate;
var sound_data = LoadWave(
 File.Open(filename, FileMode.Open),
 out channels,
 out bits_per_sample,
 out sample_rate);
var sound_format =
 channels == 1 && bits_per_sample == 8 ? ALFormat.Mono8 :
 channels == 1 && bits_per_sample == 16 ? ALFormat.Mono16 :
 channels == 2 && bits_per_sample == 8 ? ALFormat.Stereo8 :
 channels == 2 && bits_per_sample == 16 ? ALFormat.Stereo16 :
 (ALFormat)0; // unknown

AL.BufferData(MyBuffers[0], sound_format, sound_data, sound_data.Length,
sample_rate);
if (AL.GetError() != ALError.NoError)
{
 // respond to load error etc.
}

// Create a sinus waveform through parameters, this currently requires Alut.dll in the
application directory
if (XRam.IsInitialized)
{
 XRam.SetBufferMode(ref MyBuffer[1], XRamStorage.Hardware); // optional
}
MyBuffers[1] = Alut.CreateBufferWaveform(AlutWaveform.Sine, 500f, 42f, 1.5f);

// See next book page how to connect the buffers to sources in order to play them.

// Cleanup on application shutdown
AL.DeleteBuffers(MyBuffers.Length, MyBuffers); // free previously reserved Handles
AC.Dispose();

Page 38

Previous Time Plans:

Page 39

Page 40

References

Brüel & Kjaer, 1982. 1. Sound Intensity. In: Technical review : to advance techniques in
acoustical, electrical and mechanical measurement.. s.l.:Brüel & Kjaer, p. 5.

Collecchia, R., 2012. Numbers & Notes: An Introduction To Musical Signal Processing.
Portland: Perfectly Scientific Press.

Dodge, C. & Jerse, T. A., 1997. Computer Music. 2nd ed. New York: Schirmer Books.

Edelman, A., McCorquodale, P. & Toledo, S., 1999. The Future Fast Fourier Transform?.
Sci. Computing, 20(3), pp. 1094-1114.

Firelight Technologies, 2002. FMOD. [Online]
Available at: http://www.fmod.org/
[Accessed November 2014].

Guo, H. & Burrus, C. S., 1994. The Quick Discrete Fourier Transform. Adelaide, IEEE, pp.
445-448.

Guo, H. & Burrus, C. S., 1996. Fast approximate Fourier transform via wavelets transform.
s.l., SPIE.

Klapuri, A. & Davy, M., 2007. 1.1 Terminology and Concepts. In: Signal Processing for Music
Transcription. Tampere: Springer, p. 8.

Nielsen, J., 1993. Usability Engineering. San Francisco: Morgan Kaufmann Publishers.

OpenTK, n.d. OpenTK Tutorials - OpenAL: 1. Devices, Buffers and X-Ram. [Online]
Available at: http://www.opentk.com/node/209
[Accessed October 2014].

Rokhlin, V., 1985. Rapid Solution of Integral Equations of Classic Potential Theory.
Computational Physics Vol. 60, Volume 60, pp. 187-207.

Rosen, S. & Howell, P., 2011. Signals and Systems for Speech and Hearing. 2nd ed.
s.l.:BRILL.

SFML, n.d. SFML. [Online]
Available at: http://www.sfml-dev.org/index.php
[Accessed Janurary 2015].

Smith, J. O., 2007. Mathematics of the Discrete Fourier Transform (DFT). [Online]
Available at: http://ccrma.stanford.edu/~jos/mdft/
[Accessed 17 April 2015].

Van Loan, C., 1987. Computational Frameworks for the Fast Fourier Transform. s.l.:Society
for Industrial and Applied Mathematics .

YouTube, 2014. Music on Oscilloscope. [Online]
Available at: https://www.youtube.com/watch?v=pdC_aITNFG0
[Accessed 14 April 2015].

